IMSERC User Manual for NMR

CONTENTS

Introduction	3
Safety	3
Data Management	3
Software	4
Default Instrument Status	4
Sample Preparation	5
FIVE steps to use IMSERC NMR	6
Common Commands/Parameters in TopSpin	6
Setting up experiments & Processing	6
Important parameters for acquisition	7
Data Acquisition:	8
Use IconNMR w/ SampleXpress	8
Interactively setup experiment with TopSpin	10
Data Analysis	
Publication	
Experimental Section	
Acknowledgement	
Troubleshooting	15
APPENDIX A: List of common experiments on ICONNMR	
APPENDIX B: Variable Temperature Control for NMR	
Introduction	
Operation Procedure	
Important notes (instument damage will occur if not followed):	
APPENDIX C: 1D Selective NOESY with Topspin	
Reference Spectrum	21
Set up the 1D selective NOESY	21
Display 1D NOESY together with 1D proton spectrum	
APPENDIX D: Proton DOSY Experiment	25

Introduction	25
Experiment	26
Processing	27
Additional notes	28
APPENDIX E: NMR T1 relaxation Experiment	29
Introduction	29
Setting up proton T1 Experiment	29
Processing	32
APPENDIX F: Kinetics / reaction monitoring	35
Introduction	35
Separate 1D Spectra w/ multi_zgvd	35
Pseudo 2D Mode Procedure	36
APPENDIX G: Evans Method	38
Introduction	38
Preparation	38
Experiment Setup (quick procedures)	39
Data Analysis	39
References	40
Revisions	41

INTRODUCTION

This manual is intended to give you instructions on how to setup the routine NMR experiments with Topspin and IconNMR interfaces. Use of this instrument is allowed only by gualified users after receiving training by a staff member. Do not run this instrument without approval from IMSERC staff. Failure to do so may cause damage to the instrument, produce invalid data, and result in additional fees and/or removal of all IMSERC privileges. This short set of instructions is meant to serve as a guide for 'routine' data collection on the instrument. For custom experiments, contact a staff member. Please read this standard operating procedure and acquaint yourself with the instrument. If during the course of using the system, something happens that you do not understand, please stop and get help. In any event, be completely prepared to justify your actions. The cost of even minor repairs is considerable.

SAFETY

All users of IMSERC must review the general safety policies at http://imserc.northwestern.edu/aboutpolicies.html. To become an independent user of this instrument, you must have the following safety training and certificates that are offered at https://learn.northwestern.edu:

- Laboratory Safety
- Strong magnetic field safety •
- **Personal Protective Equipment**

You need the above certificates in order to be able to reserve time for this instrument on NUCore. Upon completion of the certificate, it will take an overnight to filter through the different systems and get into the files that NUCore uses. Additionally, familiarize yourself with the location of standard safety stations like eyewash and shower stations found in the west side of the NMR room. Protective eyewear is required in this room, and gloves should be removed when using the computer.

DATA MANAGEMENT

The following template is used to save your fids: /home/walkon/data/YourGroupFolder/YourNetid/SampleName. Your personal data folder is created during training. Please save data under your personal folder, which must be located under your group folder (supervisor's last name). See a staff member if you need help to create your personal folder on the instrument.

Data on the instrument is copied to 'imsercdata.northwestern.edu' in real time. You can access your NMR data through imercdata.northwestern.edu/YourGroupFolder/nmr/NMRInstrumentName. Please follow instructions at http://imserc.northwestern.edu/about-general-faq.html#data for details about data access.

SOFTWARE

Offline data processing and analysis can be performed with MNOVA and Topspin. Northwestern has campus wide license for MestraNova. Please refer to Mnova installation instructions at http://imserc.northwestern.edu/aboutgeneral-faq.html#software to install the program on your computer. Make sure to connect to Northwestern VPN when you work off campus. You are also encouraged to download the Topspin software from Bruker at https://www.bruker.com/service/support-upgrades/software-downloads/nmr.html and claim your free academic license.

DEFAULT INSTRUMENT STATUS

The default interface on Ag500 and X500 is IconNMR. Please do not change! You do not need go through NUCore to use these two fully automated NMR instruments.

The default interface on A600, Au400, and HFCN600 is Topspin. Computer screen is by default deactivated. You must start your reservation through NUCore in order to turn on the computer screen. You have to login to NUCore to start your reservation before you can use. You can optionally start IconNMR if you want. Please return the instrument back to Topspin after you finish using IconNMR. Please end your reservation on NUCore after you finish.

The Hg400 (solids) is always on **Topspin**. Similar to A600/Au400/HFCN600, you have to go through NUCore to start/end your reservations. It has two probes, 4mm HX and 1.6 mm HFX. Notify the staff member in advance, if you need use a different probe than the one is currently installed.

If there is an error or problem with the instrument, please report the issue by following at least one of the steps below:

1. If you have already started your reservation using NUCore, please logoff by selecting the error reporting option and a brief description about the issue

IMSERC Integrated Molecular Structure Education and Research Center Northwestern University

- 2. If you have not started your reservation using NUCore, please report problems with the instrument at http://imserc.northwestern.edu/contact-issue.html add place the 'Stop' sign near the instrument computer. 'Stop' signs are located next to instrument and online at the link above
- 3. Email or talk to a staff member

SAMPLE PREPARATION

Please use clean, non-scratched 5mm NMR tubes to prepare your samples. Some reputable NMR tubes vendors are listed here: http://imserc.northwestern.edu/nmr-links.html

The sample volume should be between 0.5 to 0.7 ml, preferably 0.55 ml for best shimming results. The solution should be clear of precipitation or suspended particles by going through filtration or centrifugation.

FIVE STEPS TO USE IMSERC NMR

- 1. Login to NUCORE with your netid and logon to the instrument:
 - a) turn on the computer monitor at instrument,
 - b) your usage count starts
- 2. Login to instrument with your operator id (usually same as netid)
- 3. Load your sample and run your experiment
- 4. Logout from the instrument
- 5. Login to NUCORE and logout your instrument session:
 - a) turn off the computer monitor at instrument,
 - b) your usage count stops

COMMON COMMANDS/PARAMETERS IN TOPSPIN

SETTING UP EXPERIMENTS & PROCESSING

sx 10	to put #10 (could be any position) sample on the autosampler into magnet.
sx ej	to put sample inside magnet back to the autosampler
rga	automatically set receiver gain
zg	start acquisition
tr	transfer data (while acquisition is in progress)
multizg	start multiple acquisitions starting from current dataset
go	submit experiment to acquisition
stop	abort an acquisition, losing all the FID data recorded so far
halt	halt the running acquisition, saving the recorded FID data to hard disk
efp	weighted Fourier Transformation for 1D dataset
apk	do automatic phase correction
abs	automatically optimize baseline

IMSERC Integrated Molecular Structure Education and Research Center Northwestern University

weighted Fourier Transformation for 2D dataset

IMPORTANT PARAMETERS FOR ACQUISITION

- P1 F1 channel 90° pulse width, micro seconds
- F1 channel 180° pulse width P2
- RG **Receiver** gain

xfb

- D1 relaxation delay, 1 to 5 times T1
- 2TD Time domain data points for F2 (direct dimension)
- 2SW spectral width in ppm for F2 (direct dimension)
- 1TD Time domain data points for F1 (indirect dimension)
- 1SW spectral width in ppm for F1 (indirect dimension)
- AQ Acquisition time in seconds
- NS Number of scans
- DS Number of dummy scans
- NUC1 NUC8 Nucleus observed (1H, 13C, 31P, 19F, etc.)
- 01 08Frequency offset for channel 1 – 8 in Hz
- 01P 08P Freq. offset for channels 1 – 8 in ppm
- SFO1 SFO8 Freq. for channels 1 – 8 in MHz

DATA ACQUISITION:

USE ICONNMR W/ SAMPLEXPRESS

- 1. Login with your operator ID
- 2. Load your sample to SampleExpress
- 3. Click the Holder # where you sample is loaded.
- 4. Click Add
- 5. Fill in following fields: Name (5a), No. (5b), Solvent (5c), and Experiment (5d)
- 6. Change parameters if needed
- 7. Click Submit
- 8. Logout ICON by clicking on "change user"

Fig 4: Steps to setup NMR experiment with IconNMR

Integrated Molecular Structure Education and Research Center Northwestern University

File <u>R</u> un Ho <u>l</u> der <u>y</u>	<u>V</u> iew Fi <u>n</u> d <u>P</u> ara			n. Automation repa		yongbo					
285 DS 88	7	meters Options	<u>T</u> ools <u>H</u> elp								
254 00 00	🐼 Stop 🗱	i		5 a	5b	5c	5d				
Experiment Table											
Holder Type S	tatus	Disk		Name	No.	Solvent	Experiment	Pri	Par		Title/Orig
▶ 1 4 JA	vailable										
A HE A	vailable	/home/walkon/	data/zhang	▼ Feb14-2018	- 50 0	CDCI3 d-	N PROTON	1- *	0 =	4 8	
2							L				
									6		
									U		
										-	
										-	
7				4						-	0
7				4						_	8
7				4							8
7 Submit	<u>C</u> ancel	Edit	Delete	4 <u>A</u> dd 1	Copy	1			_	24	8 Change <u>U</u> ser
7 Submit Preceding Experime	<u>C</u> ancel	Edit	Delete	4 <u>A</u> dd 1	Сору	1				23	8 Change <u>U</u> ser
7 Submit Preceding Experime # Date	<u>C</u> ancel nts Holder	<u>E</u> dit Name	Delete	4 Add 1 Experiment	Copy	Lock St	im Acq	Proc	User	Disk	8 Change <u>U</u> ser

Notes for middle panel of fig 4 (step #2, labeled with 1-4 in black):

- 1. Message display
- 2. Displays the cassette with its 60 positions.
 - Gray positions are empty positions.
 - White positions are loaded with samples.
- 3. Information about Operator Access Position and Sample inside magnet.
- 4. Touch screen buttons to Add and Remove samples.

INTERACTIVELY SETUP EXPERIMENT WITH TOPSPIN

- 1. Create new dataset and setup initial parameters
- 2. Insert/Eject Sample
- 3. Lock on your selected Solvent
- 4. Tune/Match the Probe to the nuclei of your experiment
- 5. Shim
- 6. Load probe related parameters
- 7. Auto set receiver gain
- 8. Acquire fid
- 9. Process data

Fig 1: Flow chart for interactively setting up NMR experiment with TOPSPIN

Parameters setting for 1D and 2D experiments

The arrowed fields at Fig 2 (1-5) need to be filled and changed at Fig 3 (1-8) based on your needs.

Input to the "new dataset" window:

- 1. Sample name
- 2. Experiment number
- 3. Experiment to run
- 4. Solvent used
- 5. Directory for the dataset (your folder under your group name)
- 6. Change the parameters for fields 1-8 at Fig. 3 in next page based on your needs

Integrated Molecular Structure Education and Research Center Northwestern University

Fig 2: Input to the "new dataset" window

é	Create New Dataset - new 🗙
Prepare for a new experiment by creating a initializing its NMR parameters according to For multi-receiver experiments several data Please define the number of receivers in the	new data set and o the selected experiment type. asets are created. e Options.
NAME	1 yw1-042
EXPNO	2 3
PROCNO	1
⊖ Use current parameters	
Experiment 13C	Select 3
Options	
🗹 Set solvent	4 C2D2CI4
Execute 'getprosol'	
⊖ Keep parameters	P 1, O1, PLW 1 👻 Change
DIR	5 /home/walkon/data/Marks/ygq763
🗷 Show new dataset in new window	
Number of additional datasets: (1,2, .	16) 1
TITLE	
1	<u>Q</u> K <u>C</u> ancel More <u>I</u> nfo <u>H</u> elp

INTERCO Integrated Molecular Structure Education and Research Center Northwestern University

Fig 3: Important parameters might need to be changed

1 presat 1 1	/home/walkon/data/zha	ng		
Spectrum	ProcPars AcquPa	ars Title PulsePro	g Peaks Integrals	Sample Structure Plot Fid Acqu
▶ A 🔒 📕	🛱 C 🔍 🦓	Probe: P	PA BBO 600S3 BE	3-H-D-05 Z BTO
General Channel f1	🔿 General			
	PULPROG	zgpr	E	Pulse program for acquisition
	TD	32768		Time domain size
	SWH [Hz, ppm]	9615.38	16.0212	Sweep width
2	AQ [sec]	1.7039360		Acquisition time
	RG	203		Receiver gain
	DW [µsec]	52.000		Dwell time
	DE [µsec]	6.50]	Pre-scan-delay
3	D1 [sec]	2.00000000]	Relaxation delay; 1-5 * T1
	d12 [sec]	0.00002000		Delay for power switching [20 usec]
	DS	0]	Number of dummy scans
4	NS	4]	1 * n, total number of scans: NS * TD0
	TDO	1		Number of averages in 1D
	🙆 Channel f1		5	
	SFO1 [MHz]	600.1678208		Frequency of ch. 1
	O1 [Hz, ppm]	2820.78	4.700	Frequency of ch. 1
	NUC1	1H Edit		Nucleus for channel 1
	P1 [µsec]	12.700		F1 channel – 90 degree high power pulse
	PLW1 [W, dB]	31.623	-15.00	F1 channel – power level for pulse (default)
	PLW9 [W, dB]	0.00020402	36.90	F1 channel – power level for presaturation

1 tp35 12 1 /hom	ne/walkon/data/zhang								
Spectrum Pr	ocPars AcquPars	Title PulseProg	Peaks	Integrals	Sample	Structure	Plot	Fid	Acqu
м Л S 🕇 🖼	1,2, ▼ C 🆓	Probe: F	PA BBO	600S3 E	3B-H-D	-05 Z BT	0		
Experiment Width Receiver	Experiment	F2		F1	Frequence	cy axis			
Nucleus Durations	PULPROG	hsqcetgp	1	E	Current p	oulse program	ı		
Power Program	AQ_mod	DQD			Acquisiti	on mode			
Probe	FnTYPE	traditional(planes)			nD acqui	sition mode fo	or 3D etc	2.	
NUS	FnMODE	1024	Echo-Ant	iecho	Acquisiti	on mode for 2	D, 3D et	:c.	
Wobble		1024	256		Size of fi	d - E d			
Lock Automation	DS NS	0			Number	of durniny scal	ns		
Miscellaneous		1	6		Loop.cou	unt for 'td0'			
User Routing	TDay	0			Average	loon counter f	for nD e	vnerim	ents
Ŭ	Width	<u> </u>	7		, incluge				
	SW [ppm]	20.0264	165.0000)	Spectral	width			
	SWH [Hz]	12019.230	24902.28	33	Spectral	width			
	IN_F [µsec]		40.16		Incremen	it for delay			
	AQ [sec]	0.0425984	0.005140)1	Acquisiti	on time			
	FIDRES [Hz]	23.475060	194.5490	88	Fid resol	ution			
	FW [Hz]	4032000.000			Filter wid	th			
	🐼 Receiver								
	RG	203			Receiver	gain			
	DW [µsec]	41.600			Dwell tim	ie			

INTERCO Integrated Molecular Structure Education and Research Center Northwestern University

2 RR 3 1 /home/w	2 RR 3 1 /home/walkon/data/zhang								
Spectrum Pro	ocPars AcquPars	Title PulsePr	og Peaks	Integrals	Sample	Structure	Plot	Fid	Acqu
□ □ S 目 □ C ● C ● Probe: PA BBO 600S3 BB-H-D-05 Z BTO									
Experiment Width	🔊 Nucleus 1								
Receiver	NUC1	1H Edi	it 13C	-	Observe	nucleus			
Nucleus	O1 [Hz]	2820.78	11318.3	7	Transmit	ter frequency	offset		
Power	O1P [ppm]	4.700	75.000		Transmit	ter frequency	offset		
Program	SFO1 [MHz]	600.1678208	150.922	9277	Transmit	ter frequency			
Probe Lists	BF1 [MHz]	600.1650000	150.911	6093	Basic trar	nsmitter frequ	ency		

DATA ANALYSIS

MNOVA has an extremely comprehensive manual accessed through "help". A simplified MNOVA manual can be found at http://imserc.northwestern.edu/downloads/nmr-mnova chemists8 simplified.pdf. The most useful Topspin manuals for processing is at http://imserc.northwestern.edu/downloads/nmr-processing-reference.pdf

PUBLICATION

EXPERIMENTAL SECTION

Write a paragraph similar to the 'experimental section' found in a publication. Details about every instrument component and methods must be provided in this paragraph. The NMR spectrometer specifications can be found in the table at "ACKNOWLEDGEMENT" section below. You need only the content in the parenthesis. For example, you should write "Bruker NOE 600 MHz spectrometer equipped with QCI-F cryoprobe" if you use HFCN600, DO NOT write "HFCN600" as the name of NMR spectrometer in your publication.

The important information about your NMR experiment includes but not limited to, the experiment name, spectral width, acquisition time/time domain points, window function for apodization etc.

ACKNOWLEDGEMENT

Acknowledgement info is listed under http://imserc.northwestern.edu/about-acknowledgements.html.

If your work used the HFCN600 please use this acknowledgement:

This work made use of the IMSERC at Northwestern University, which has received support from the NIH (1S10OD012016-01 / 1S10RR019071-01A1), Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205), the State of Illinois, and the International Institute for Nanotechnology (IIN).

For other NMR instruments, please use this acknowledgement:

For This work made use of the IMSERC at Northwestern University, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205), the State of Illinois, and the International Institute for Nanotechnology (IIN).

IMSERC Integrated Molecular Structure Education and Research Center Northwestern University

Instrument	Funding Source
HFCN600 (Bruker NOE 600 MHz w/ QCI-F cryoprobe)	NIH 1S100D012016-01 / 1S10RR019071-01A1
A600 (Bruker AVANCE III 600 MHz w/ BBFO probe)	NU / Int. Institute of Nanotechnology
Ag500 (Bruker AVANCE III 500 MHz w/ DCH cryoprobe)	NU
X500 (Bruker AVANCE HD 500 MHz w/ Prodigy probe)	Int. Institute of Nanotechnology
Hg400 (Bruker AVANCE HD 400 MHz w/ MAS solids probe)	Int. Institute of Nanotechnology
Au400 (Bruker AVANCE HD Nanobay 400 MHz w/ BBFO probe)	NSF CHE-1048773

TROUBLESHOOTING

- 1. If you need go to Topspin interface by exiting IconNMR on A600, Au400, and HFCN600, please login with username "walkon" (with password "GO*******"), stop automation first, then quit IconNMR.
- 2. If you have to reboot the computer for NMR instrument, login with account "walkon" (with password "GO******). Click the "Topspin" icon on desktop to start acquisition software. Leave the acquisition software open when you are done with the measurement.
- 3. At this time, if you experience difficulty with SampleXpress autosampler, please contact a Staff.

APPENDIX A: LIST OF COMMON EXPERIMENTS ON ICONNMR

Experiment entries	Description	Recommended setting for ~10mg material, please modify "NS" accordingly based on your sample concentration		
PROTON_icon	routine 1D proton spectrum			
C13CPD_icon	1D ¹ H-decoupled ¹³ C spectrum			
C13DEPTQ135_icon	DEPTQ 135 experiment detect all Carbons - CH3/CH positive CH2/C negative	Common novometove for all everenimentes		
C13IG_icon	13C with inverse gated 1H decoupling no NOE for quantitative NMR	D1 : relaxation delay 1 to 5 times of T1 2-5 seconds		
C13DEPT90_icon	DEPT 90 experiment only CH	SW: spectral width in ppm for F2 (direct dimension) AO: Acquisition time in seconds		
C13DEPT135_icon	DEPT 135 experiment CH3/CH positive CH2 negative - ¹³ C 1-bond correlations, all peaks positive (dept-45 analog) DEPT-135 experiment	NS : number of scans O1P : offset freq for channels 1 in ppm, usually 1H		
gCOSY_icon	Gradient selected COSY	O2P : offset for channel 2, usually 13C 1TD : Time domain data points for F1 (indirect		
COSYDQF_icon	COSY with double quantum filter	dimension), aka number of increments 1SW: spectral width in ppm for F1		
HSQC_EDIT_icon	1H-13C multiplicity edited HSQC with gradient selection			
HSQC_icon	1H-13C 1-bond correlations, all peaks positive, HSQC with gradient selection			
HSQC_EDIT_NUS_icon	1H-13C multiplicity edited HSQC with gradient selection Non Uniform Sampling w/ 25% sampling density			
HMBC_icon	1H-13C HMBC with gradient selection using 3-fold low pass filter for better 1J suppression	$CNST13 = 3-12 Hz$ (default 8Hz for $J_{2/3}CH$)		
HMBC_NUS_icon	1H-13C HMBC with gradient selection using 3-fold low pass filter for better 1J suppression Non Uniform Sampling w/ 50% sampling density			
TOCSY_icon	Phase sensitive 2D TOCSY experiment using MLEV-17 mixing	d9 = 30 to 120 ms		
NOESY_icon	Phase sensitive NOESY 1H-1H correlations based on proximity also for exchange	d8 = 0.1 to 1 second		
ROESY_icon	1H-1H correlations based on proximity for intermediate MW around 1600 Da	p15 = 0.1 to 0.5 second		
WATER_SUPP_icon	Solvent suppression with noesygppr1d sequence			

APPENDIX B: VARIABLE TEMPERATURE CONTROL FOR NMR

INTRODUCTION

This manual is to instruct NMR IMSERC users to do the Variable Temperature (VT) experiments on A600, Au400, and Hg400 (w/ RT probes) NMR spectrometers (-150 to +150 °C). In principle, one can follow similar procedure to use the HFCN600 (equipped with QCI-F cryoprobe, with much smaller VT range from -30 to 70 °C).

Depending on your target temperature, please consult with fig 1 and table 1, 2 to pick the right spinner, set up the gas flow rate, and the cooling power for the BCU II device.

When operating at elevated temperatures, internal probe heating is sufficient and precisely regulated with the new BSVT on Au400 and Hg400, which also controls and regulates the selected VT flow rates and other auxiliary flows. Chillers are not required as long as the operating temperature is sufficiently above the room temperature. For A600, you need manually adjustments of Shim/Flush gas. If you need temperatures below room temperature, chiller (BCU II or FTS) is required.

Always remember to redo the lock, tune, and shimming if the temperature changes more than 10 °C. The solvent boiling and/or frozen point must be considered. For high temperature, the highest temperature allowed should be at least 10 °C below the boiling point while for a low temperature experiment; the lowest temperature should be at least 5 °C above frozen point.

The real temperature and detected temperature may be slight different. Please refer to the temperature calibration curve for correction or calibrate temperature yourself. If you need a temperature below -60 °C, please ask NMR staff to use liquid nitrogen as a cooling source.

OPERATION PROCEDURE

- 1. Select the right spinner based on **fig 1** and **table 1**, position and load your sample.
- 2. Open temperature control panel by typing command edte.
- 3. To change gas flow rate, click "set" under "Target Gas Flow" on BCU II (fig 2), put appropriate gas flow rate in the popup box. For FTS chiller, simple click on "-" or "+" to change the flow rate (fig 3).

- 4. To change the chiller power, for FTS chiller, set the desired temperature using the ▲▼arrow. For BCU II, click "set" under "Target Power" and select cooling power based on table 2.
- 5. To change temperature, click "set" under "Target Temperature" on BCU II (fig 2) to set your target. For FTS, click "change" button of "Target temp" row. Change the temperate by 10 °C increment and give around 5 minutes before doing next increment. Changing temperature too fast may damage the probe.
- 6. For FTS chiller, you can explicitly set the temperature. The maximum you can set is 60 °C. Please keep FTS at least 10 °C below your target temperature for above RT experiment. For extremely low experiment, you have to keep the FTS temperature 30 to 40 °C below your target.
- 7. Once the target temperature is regulated, please wait at least 5-10 minutes for the sample to reach equilibrium before you run your experiment. Remember to redo locking, tuning, and shimming for each different temperature.
- 8. Collect data.
- 9. After finishing, please restore the temperature setting back to default at 25 °C. Change flow rate and cooling power back to default.

Fig 1: Three types of spinners: Standard POM Spinner (blue, left), 0°C to +80°C; Kel-F Spinner (off white, middle) for elevated Temperatures, +80°C to +120°C; Ceramics Spinner (white, right) for high and low Temperatures, +120°C to +180°C and 0°C to -150°C (A600, Au400, and Hg400)

IMSERC Integrated Molecular Structure Education and Research Center Northwestern University

Table 1: The VT gas, shim gas, flush gas settings and recommended spinners for all 5 mm RT probes (P = POM; K

= Kel-F; C = Ceramics):

Sample T [°C]	-15080	-8050	-500	080	80120	120150
Spinner	С	С	K&C	P, K & C	K & C	С
Recom. VT gas [L/hour]	1200	1000	750	400 (P) 600 (K & C)	450	350
Shim gas [l/min]	20	20	20	0	020	2060
Flush gas [l/min]	510	5	5	0	5	5
Chiller	LN2	LN2	BCU II (-50)			

IMPORTANT NOTES (INSTUMENT DAMAGE WILL OCCUR IF NOT FOLLOWED):

- 1. The temperature of the shim system should always be $-80 \degree C < T < 80 \degree C$.
- 2. The temperature of the magnet flange (O-Ring!) has to be 3 °C < T < 80 °C, especially for long term experiments.
- 3. The shim system and the probe has to be flushed during low temperature experiments (sample temperature T < 0 °C) to prevent icing and condensed water.
- 4. The new BBFO smart probes on Au400 and Hg400 automatically adjust the Shim/Flush gas based on temperature setting. The A600 needs manually adjustments of Shim/Flush gas to 20/10 from 10/6 LPM (ask NMR staff if you do not know how).
- 5. You should raise/lower the temperate incrementally by 10 °C for about every 5 minutes
- 6. Never turn VT gas off.

Table 2: BCU II cooling mode (off, low, medium, and strong)

25 °C to 150 °C	off
25°C down to 0°C	low
0°C to -20°C	medium
-20°C to -50°C	strong

Fig 2: Au400/Hg400 VT interface with BCU II (by type command "edte)

Temperature Control Suite Temperature Monitoring Record	Correction Self tune	Configuration Log			± 2°
			on Off VTU State: On		
Channel	Regulation State	Stability	Sample Temperature	Target Temperature	Heater Power
1 PA BBO 400S1 BBF-H-D-05 Z SP N	🅑 Steady	Stable since 12:04:17 26 Sep 2018 ?	Corr. 25.0 °C	Corr. 25.0 °C (-150 °C150 °C) Set	1.7 % (max: 40.1 % of 192.8 W)
	State	Gas Flow	Target Gas Flow	Standby Gas Flow	
Probe Gas	Steady	400 lph	400 lph Set	200 lph Set	
Accessory Channel	State	Power	Target Power		
1 (Chiller) BCU	Connected	Low	Low Set		

Fig 3: A600 VT interface with FTS (by type command "edte)

Main display	Monitoring	Corrections	Self-tune	Ramp	Recording	Aux. sensors	Config.	Information
Sample tempe	rature							
Sample temp.		25.0°C						
Target temp.		25.0°0	Char	ige]			
Probe Heater	On	0.8 %	Set m	nax				
Gas flow		400 I/H	1	+				
Cooling	Off		Char	ige				

APPENDIX C: 1D SELECTIVE NOESY WITH TOPSPIN

REFERENCE SPECTRUM

Run a 1D Proton spectrum, following the instructions in the short Bruker manual.

SET UP THE 1D SELECTIVE NOESY

The selective pulse regions are set up using the integration tools. Power and duration of the shape pulses are calculated using the hard 90° pulse in the prosol table.

1. Stay in the reference spectrum, on the menu bar, click Acquire.

On the More button, click the drop-down arrow to see more options.

2. In the list, select Setup Selective 1D Expts.

The Workflow button bar changes for setting up the 1D selective experiment.

3. On the Workflow button bar, click **1D Selective Experiment Setup**.

4. In the message window, click **Close**.

There is no other function to this button then the instruction displayed above.

Expand the spectrum region having peaks you are interested in doing NOE.

5. On the Workflow button bar, click **Define Regions**.

The Define Regions toolbar is displayed:

6. Integrate the peak (multiplet) that you will irradiate to observe the NOE.

If desired, other peaks can be integrated and a separate dataset will be created for each integral saved in the region file.

7. On the toolbar, click Save/export regions

- 8. In the list, select Save Regions to 'reg'.
- 9. On the toolbar, click **Return do NOT save regions!**.

10. In the message window, click No.

Integrated Molecular Structure Education and Research Center Northwestern University

- 11. On the Create Dataset button, click the drop-down arrow to see more options.
- 12. In the list, select Selective gradient NOESY.

Sele	ctive gradient 1H
Sele	ctive gradient COSY
Sele	ctive gradient NOESY
Sele	ctive gradient TOCSY
Sele	ctive gradient ROESY
Sele	ctive gradient STEP-NOESY
1H H	iomonuclear Decoupling
Sele	ctive 1H
Sele	ctive COSY
Sele	ctive NOESY
Sele	ctive TOCSY
Sele	ctive ROESY
Mult	Solvent Suppr /presat
Mult	Solvent Suppr./WET
2D 8	and Selective HMBC
2D 8	and Selective HSQC

The default parameters are taken from the standard parameter set SELNOGP. The mixing time D8 is dependent on the size of the Molecule and the magnetic strength. It can vary from a large Molecule to a small one from 100 ms to 800 ms. If desired, the Gaus1_180r.1000 pulse can be changed by clicking on the Shape button in the above window. Number of scans (NS) should be determined based on your sample concentration.

13. Enter:

D8 = 0.450

NS = **32**

14. In the SELNOGP window, click Accept.

The new dataset is created and all parameters are automatically set.

15. In the sel1d window, click **OK** to start the acquisition.

If you click "cancel", dataset will be created but not run. You can make further changes and then start acquisition.

DISPLAY 1D NOESY TOGETHER WITH 1D PROTON SPECTRUM

- 1. Display the selective NOESY spectrum.
- ____ 2. On the toolbar, click **Multiple display**. The Multiple display toolbar is displayed:

¹/₁/₂ ⁺/₂ ⁺/₂

3. Drag the Reference spectrum (1D proton) into the spectral window.

APPENDIX D: PROTON DOSY EXPERIMENT

INTRODUCTION

The DOSY (Diffusion-Ordered Spectroscopy) experiment provides accurate, noninvasive, molecular diffusion measurements on biofluids, complex chemical mixtures and multi component solutions. In DOSY spectra, chemical shift is along the detected F2 axis and diffusion coefficient is along the other F1 axis.

Molecules in the solution state move. This translational motion is known as Brownian molecular motion and is often simply called diffusion or self-diffusion. Molecular diffusion depends on a lot of physical parameters like size and shape of the molecule, temperature and viscosity.

Pulsed field gradient NMR spectroscopy can be used to measure translational diffusion. By use of a gradient pulse, molecules can be spatially labeled. After this encoding gradient pulse (δ), molecules move during the diffusion time (Δ). Their new position can be decoded by a second gradient pulse. This encoding/decoding procedure results

$$I(g) = I(o)exp\left[-(\gamma g\delta)^2 D\left(\Delta - \frac{\delta}{3}\right)\right]$$

in an attenuation of the NMR signal which can be described by the following equation:

Where I is the observed intensity, **D** is the diffusion coefficient, γ is the gyro magnetic ratio of the encoded nucleus, g is the gradient strength, δ is the length of the gradient pulse, and Δ as mentioned previously is the diffusion time.

The diffusion experiment records a series of 1D ¹H spectra at increasing gradient strengths (g) and then fits the signal intensity decay to the above equation to obtain **D**.

Convection within the sample tube, such as, moving liquid columns along the sample axis (primarily due to temperature gradients), can seriously affect diffusion experiments, in particular, at elevated temperatures. Convection currents are caused by small temperature gradients in the sample and result in additional signal decay that can be mistaken for faster diffusion.

DOSY uses three parameters to define the duration of the diffusion: gradient length δ (P30 in topspin, the total gradient defocusing time), the diffusion gradient level g (GPZ6 in topspin, maximum 95%), and the diffusion delay

 Δ (D20 in topspin, 60 ms as default, max determined by the shortest T1 relaxation). In most case, GPZ6 is the variable parameter to be arrayed for DOSY purpose. Depending on sample, you might need increase D20 and/or P30 (max 2ms!) in order to obtain enough signal attenuation. The purpose of doing this is to get a diffusion decay curve like in the **figure C** below that will give you the best DOSY fitting.

There are two sets of parameter files under user directory:

ledbpgp2s ("longitudinal eddy current delay" LED-bipolar gradients pulse sequence)

dstebpgp3s (double stimulated echo for convection compensation and LED using bipolar gradient pulses for diffusion using 3 spoil gradients).

With LED, magnetization is stored along the z-axis during most of the pulse sequence, so T1 relaxation is predominant. Since in macromolecules the T1 relaxation is slower than the T2 relaxation, the LED experiment is better suited to the measurement of Ds of slower diffusing molecules where longer "diffusion delay" is required to detect attenuation of the signal.

Figure: Simulated diffusion decay curves by varying the gradient strength g from 2 to 95% in 16 steps for the same diffusion constant, but with different selection for Δ and δ . They are chosen too small (A), too big (B), and properly (C) to sample data points along the whole decay curve.

EXPERIMENT

The DOSY pulse program used in the following procedure is the Stimulated spin-echo experiment using bipolar gradients and an additional delay just prior to detection for the ring-down of any possible eddy currents (ledbpgp2s). The same procedure works for dstebpgp3s if you need convection compensation.

IMSERC Integrated Molecular Structure Education and Research Center Northwestern University

- 1. To set up a DOSY experiment, start with recording a normal proton spectrum, followed by optimizing P1, SWH, and O1, if necessary.
- 2. Type "rpar ledbpgp2s1d_nu all" to retrieve 1D dosy parameters (or "rpar" to select "ledbpgp2s1d_nu"). Update solvent with yours (default is CdCl3)
- 3. Check to make sure the P1, SWH, and O1 are same as your proton experiment. The recycle delay D1 should be 1-2 T1 and dummy scan DS should be at least 8. Adjust NS accordingly to give sufficient S/N.
- 4. Change GPZ6 to 2% and type "zg" to collect data.
- 5. Use "edc" to create another 1D experiment and change GPZ6 to 75% and type "zg" to collect data
- the nmr signals of interest are attenuated to less than 5-10% of the intensities obtained with GPZ6 at 2%. If you don't get there or already past it, adjust GPZ6 (to 95% or 50%) accordingly to make sure you get there. Write down the GPZ6 value for 2D DOSY setup.
- 7. If changing GPZ6 alone is not enough to attenuate the signal enough, increase the D20 and/or P30 to achieve the goal.
- 8. Type "rpar ledbpgp2s_nu all" to retrieve 2D dosy parameters (or "rpar" to select "ledbpgp2s_nu"). Update solvent, P1, SWH, and O1 with the values from your proton experiment
- 9. Type" dosy" to create the gradient ramp function:
- 10. Enter first gradient amplitude: 2

Enter final gradient amplitude: 95 (or the value obtained from 1D DOSY)

Enter number of points: 16 (or the number you think appropriate for your sample)

ram type (l/q): l

and finally, Do you want to start acquisition? Select OK to collect 2D DOSY data.

PROCESSING

- 1. Set the proper window function.
- 2. Type "eddosy"
- 3. Type "**setdiffparm**" (or click
- 4. Type "**xf2**" (or click 💾)
- 5. If you need phase the spectrum, type "rser 1" to read the 1st fid to a new prono and type "efp" and "apk" to get correct PHC0 and PHC1 numbers. Then go back to 2D DOSY dataset and correct the phase values. Remember the phase mode is "**pk**" for direct dimension (F2).

- 6. Type "dosy2d setup" (or click 1,)
- 7. Type "**dosy2d**" (or click), you should see the 2D DOSY spectrum with chemical shift along the detected F2 axis and diffusion coefficient along F1 axis.

ADDITIONAL NOTES

Sample preparation: make sure the sample volume is not more than 550 ul.

APPENDIX E: NMR T1 RELAXATION EXPERIMENT

INTRODUCTION

When an NMR sample sits in the magnet, the applied static magnetic field B_0 will generate the equilibrium magnetization M_0 along +z axis. When a RF pulse is allied to the sample, the net magnetization will be rotated away from +z axis. T1 relaxation (longitudinal or spin-lattice) is the process by which the net magnetization goes back to its initial maximum value ($M_{z,eq}$) parallel to B_0 .

The inversion-recovery experiment measures T_1 relaxation times of any nucleus. If the net magnetization is placed along the -z axis, it will gradually return to its equilibrium position along the +z axis at a rate governed by T1. The equation governing this behavior as a function of the time t after its displacement is:

$$M_z(t)=M_{z, ext{eq}}\left(1-2e^{-t/T_1}
ight)$$

The basic pulse sequence consists of an 180° pulse that inverts the magnetization to the -z axis. During the following delay, relaxation along the longitudinal plane takes place. Magnetization comes back to the original equilibrium z-magnetization. A 90° pulse creates transverse magnetization. The experiment is repeated for a series of delay values taken from a variable delay list. A 1D spectrum is obtained for each value of vd and stored in a pseudo 2D

dataset. The longer the recycle delay (d1) is, the more precise the T1 measurement is. Ideally d1 should be set to 5*T1. A rough estimation of the T1 value can be calculated from the null-point value by using T1=tnull/ln2.

SETTING UP PROTON T1 EXPERIMENT

- 1. To set up a T1 experiment, start with recording a normal proton spectrum to adjust the spectral sweep width **SWH**, acquisition time **aq** and other parameter if necessary.
- Create new dataset and load "Proton_T1" parameter set. Update the parameters with the ones you obtained from last step. The recycle delay D1 should be ~2-5*T1. Adjust NS accordingly to give sufficient S/N (fig 1).
- 3. Edit the "t1delay" by clicking on at VDLIST line in **fig 1. Fig 2** is a good starting list.

Integrated Molecular Structure Education and Research Center Northwestern University

- 4. Change the "TD" value for F1 dimension to the number in your VDLIST (fig 3)
- 5. Collect the pseudo 2D T1 dataset

Fig 1. ACQUPARS display in "pulse program parameters" view

SPECTRUM	PROCPARS AC	QUPARS TITLE F	PULSEPROG	PEAKS	INTEG	GRALS	SAMPLE	STRUCTURE	PLOT	FID	ACQU
∽ <u>^</u> <u>}</u> ⊌	∷ c ∧	Prob	e: CP QCI	600S	3 H/F	F-C/N	-D-05	Z			
General Channel f1	General										
	PULPROG	t1ir			E	Pulse	program fo	or acquisition			
	TD	32786				Time o	domain siz	e			
	SWH [Hz, ppm]	8196.72	13.665	57		Sweep	o width				
	AQ [sec]	1.9999460				Acquis	sition time				
	RG	64				Receiv	ver gain				
	DW [µsec]	61.000				Dwell	time				
	DE [µsec]	20.00				Pre-sc	an-delay				
	D1 [sec]	5.00000000				Relaxa	ation delay:	1-5 * T1			
	d11 [sec]	0.0299999993				Delay	for disk I/O	([30 ms	ec]	
	DS	0	_			Numb	er of dumn	ny scans			
	NS	2				Scans	to execute	e			
	VDLIST	t1delay			E	Variab	le delay lis	t			
	vd [sec]	5.0000000				vd[10]]= { 5.0000	000 sec 0.0010	00 sec	}	

Fig 2. An example of t1delay list with 8 delays

	0.050
5	0.000
3	0.250
4	0.500
5	0.800
6	1.5
7	3
8	5

INTERCONSTITUTE Integrated Molecular Structure Education and Research Center Northwestern University

Fig 3. ACQUPARS display in "all acquisition parameters" view

SPECTRUM	PROCPARS ACQUPA	RS TITLE	PULSEPROG	PEAKS	INTEGR	ALS	SAMPLE	STRUCTURE	PLOT	FID	ACQU
∽л s 🖌	₩₩,+, ≪ C .		Probe	e: CP Q	CI 600)S	3 H/F-C/I	N-D-05 Z			
Experiment Width Receiver	 Experiment 	F2		F	L		Frequency ax	dis 🖡			
Durations Power	PULPROG AQ mod	t1ir			E	-	Current pulse	e program			
Program Probe	FnTYPE	traditional(pl	anes)		-	•	nD acquisitio	n mode for 3D e	etc.		
Lists NUS	FnMODE	[manual]	Q	F		•	Acquisition m	iode for 2D, 3D	etc.		
Wobble	TD	32786	8				Size of fid				
Lock	DS	0					Number of du	ummy scans			
Automation	NS	2					Number of sc	ans			
User	TD0	1					Loop count fo	or 'td0'			
Routing	TDav	0					Average loop	counter for nD	experime	ents	

PROCESSING

- 1. Process and adjust phase for the dataset. Use rser n (n is the number of total delays) to read out the last fid. Process and phase correct it. On the Adjust Phase toolbar, click **Save for spectrum**.
- 2. Go back to pseudo 2D T1 dataset by closing the 1D window
- 3. At the command prompt, type **xf2** to process only the F2 axis. Type **abs2** to baseline correct the rows.
- 4. On the menu bar, click Applications.
- 5. On the **Dynamics** button, click the drop-down arrow to see more options and in the list, select **T1/T2 Module**.

C Dynami	CS 🗸					
<u>T</u> 1T2 (t1t2)					
G Back	₩~ <u>E</u> id	A Peaks/Ranges	Relaxation	Fitting	> Calculation	Report

- 6. The flow buttons change to determine the T1 / T2 relaxation times. While executing the steps below, message windows will be displayed. Please read each message thoroughly and follow the instructions. On the Workflow button bar, click Fid
- 7. In the Extract a row from 2d data window, click Spectrum

🧅 Extra	act a row from 2d data
•	Fid or Spectrum must be extracted From the 2d relaxation data. This row should correspond to an experiment with the maximum or minimum delay time. All further data preparation will be done in respect to this row.
	FID Spectrum Cancel

8. Enter Slice Number = n (the last one).

9. On the Workflow button bar, click Peaks/Ranges.

10. In the Define Peaks and/or Integrals window, click Manual Integration.

- 11. Define the regions by drawing an integral over the peaks of interest, On the Integration toolbar, click Save/export r În integration regions
- 12. In the list, select Export Region To Relaxation Module.

Save Regions To 'intrng' Save Regions To 'reg' Export integration regions Export Regions To Relaxation Module and .ret. Save & Show List

13. In the Prepare relaxation data window, click OK

14. On the Workflow button bar, select Relaxation.

Fitting

- 15. By default, the selected areas are peak-picked, and the first peak is displayed in the Relaxation window.
- 16. .On the Workflow button bar, select Fitting
- 17. In the message window, click Close.

INTERC Integrated Molecular Structure Education and Research Center Northwestern University

- 18. In the Relaxation parameters window, click **OK** and select **Area** as Fitting type.
- 19. On the Workflow button bar, select **Calculation**. > Calculation
- 20. In the message window, click Close.

21. In the T1/T2 tools bar, click Calculate fit for all peaks

Brief Report
Region 1 from 7.797 to 7.650 ppm
T1 = 1.339s
Region 2 from 7.313 to 7.159 ppm
T1 = 1.294s
Region 3 from 6.860 to 6.413 ppm
T1 = 555.498m
Region 4 from 4.891 to 4.725 ppm
T1 = 644.916m
Region 5 from 3.414 to 3.321 ppm
T1 = 1.110s
Region 6 from 2.076 to 1.372 ppm
T1 = 398.815m
Region 7 from 1.171 to 0.552 ppm
T1 = 378.896m

	🍦 Relaxati	ion parameters						
	General Pa	arameters						
	16	FID # for phase determination						
	1000.0	Left limit for baseline correction						
	-1000.0	Right limit for baseline correction						
	5	Number of drift points						
	1.0E-5	Convergence limit						
	16	Number of points						
	1	First slice						
	1	Slice increment						
	1.0	1.0 Peak sensitivity						
	Fitting Function							
\bigotimes	uxnmrt1	 Function Type 						
\bigcirc	1	Number of components						
	vdlist	 List file name 						
	0.001	Increment (auto)						
	pd	 to pick data points 						
	Iteration co	ontrol parameters						
		Guesses Reset						
	Additional	Parameters						
	10000.0	GAMMA(Hz/G)						
	10.0	LITDEL(msec)						
	100.0	BIGDEL(msec)						
	1.0	GRADIEN(G/cm)						
		OK Apply Cancel						

22. On the Workflow button bar, select Report

41	troper press				
£14	Edt Search				
12332478881	Barlaner : Criftenker HER Ein - Ifej-effi Hi polate Results T[0] - F -	/TopEpin/or offer 101-00 fee 101-00 fee 11-00 fee 1-00 -1-001-00	amining(1), org 1) 1) T. Tantagar	/Nyplanty/1 C Region From 3.717 to 7.650 pps	
-	8 -	7.926-85			
10					
1.2	1.44	May 14	togral int	inatty	
1.5	1	1 444		4 5171-187	
1.2	10.000	1 1.00	-1 CHILAND	4 (0)14407	
1.22	100.000	3 484		1.1303-007	
1.2	100.000	1.000		4 3865-183	
1.5	100.000	7 685	-3.55714+88	1 0014-07	
- ñi	100.000	2.655	.1.05334.00	-7.7Mas07	
1.1	100.000	2.695	-3.66(3++07	-3.7792+185	
23	1.000+	7.698	5.6663++87	6.457584	
14	1.508+	3.688	2.2518++88	2.436++97	
11	2.668+	1.698	3.48714+88	4.01414:07	
11	7.508+	3.698	4.2955++88	4.54550-87	
10	3.008+	3.690	4.7555++88	5.5505++87	
1.00	3,508+	3.698	5.5475e+88	6.012++07	
26	1.108.	7.695	5.475+105	6.360Ke+62	
10	4.508+	2.698	5.5853e+88	6.1963++82	
11	5.000+	1.685	3.7976++00	6.7577++02	
1.00					

APPENDIX F: KINETICS / REACTION MONITORING

INTRODUCTION

As an intrinsically quantitative analytical technique, NMR spectroscopy can be used to measure concentrations of different components during chemical reactions for period of a few minutes to multiple days. One can either take a series of 1D spectra or acquire the data in pseudo 2D mode over the period of reaction. The best way to analyze the resulting data is to use MNOVA.

Before starting, you should have good estimates of the timeframe for your reaction and T1 relaxation time for your sample. Setup the **d1** and **aq** accordingly to make sure the relaxation time (**d1+aq**) is at least $5^{*}T_{1}$. In general, the aliphatic protons on small molecules have T1 around 2 s and aromatic proton at about 4 s. You should run T1 experiment to get the numbers since it is very sample/solvent dependent.

1D method is a very versatile. Setup the 1D you will repeat and run multi_zgvd. It can be either a single pulse or single pulse with decoupling, i.e. F19 or F19CPD. The drawback of this method is that the timing between spectra can be off by a few seconds especially when your kinetics are fast and take less than an hour. The pseudo 2D, on the other hand, gives perfect timing for each fid, but it can be used only for single pulse experiment.

Once you decide how often you take a spectrum, you need strike a balance between the time resolution of the kinetic measurement and the amount of time needed to obtain sufficiently good signal-to-noise for each experiment. Limit the number of scans (ns) to be as small as necessary for adequate signal-to-noise to improve time resolution.

Before starting your reaction, please setup the experiment you want to repeat with a test sample with conditions similar to your real one. Do the locking, tuning, and shimming. Find the appropriate number of scans (ns) for adequate signal-to-noise. If resolving peaks is not a concern, you do not have to do lock/tune/shimming after putting the real sample in. Simply start acquiring the data, especially for F19.

SEPARATE 1D SPECTRA W/ MULTI ZGVD

This works for any nucleus, including proton.

1. Assume you already determined how often you want to run your recurring 1D experiment, let's call it **D20**, delay between start of different 1D spectra

IMSERC Integrated Molecular Structure Education and Research Center Northwestern University

- 2. Start with a normal 1D spectrum to adjust the spectral sweep width SWH, acquisition time aq, offset O1p, number of scans NS, and other parameter obtain sufficiently good signal-to-noise if necessary. Type expt to calculate how much time it takes. Let's call it "T_{expt}". The delay between the end of one fid and start of next one equals D20-T_{expt}. Let's call it D_{fix}.
- 3. Create a new dataset with exactly same parameters from step 1. Start your reaction and load your sample to NMR instrument as fast as you can. Since you have already done locking/tuning/shimming on a test sample with similar conditions, you have following options:
 - a) Do a topshim session first if your kinetics takes hours to finish.
 - b) Skip the topshim if your reaction is really fast
- 4. Run multi_zgvd, when asked for a fixed or variable delay, answer with the default (fixed delay), then give the D_{fix} as the input for next question. For the question of "Enter number of experiments", give the numbers of experiment you want to run.
- 5. During the run, you can use multiple display to check peak intensity changes to evaluate if you reaction finishes or not.

PSEUDO 2D MODE PROCEDURE

The following procedure can be used for any nucleus.

- 1. Following step 1 and 2 of previous section to optimize the 1D experiment you want to repeat.
- 2. Create a new dataset and load the parameter set "kx_zg2d_nu".
- 3. Input the D20 (delay between start of different 1D spectra) as shown in Fig 1 and TD on F1 dimension (how many 1D spectra you want to acquire) as shown in Fig 2.
- 4. Start your reaction and load your sample to NMR instrument as fast as you can. Since you have already done locking/tuning/shimming on a test sample with similar conditions, you have following options:
 - a) Do a topshim session first if your kinetics takes hours to finish.
 - b) Skip the topshim if your reaction is really fast
- 5. Start your experiment by typing **zg** or click on "**run**".
- 6. During the run, you can use rser to check each individual fid as long as it is finished. For example, "rser 1 10" will write the 1st fid to experiment number 10; "rser 20 11" will write the 20th fid to experiment number 11. Then you can use **multiple display** to stack or superimpose them.

Spectrum	ProcPars AcquPar	Title	PulseProg	Peaks	Integrals	Sample	Structure	Plot	Fid	Acqu	
AR	🕂 C 🛡 🦓		Prob	e: PA	BBO 40	0S1 B	BF-H-D-	05 Z	SP	N	
General Channel f1	General										
	PULPROG	kx_zg	2d_nu		E Pulse program for acquisition						
	TD	2560	6				Time domain	size			
	SWH [Hz, ppm]	6393	.86	15	9958		Sweep width				
	AQ [sec]	2.002	3892				Acquisition time				
	RG	18					Receiver gain				
	DW [µsec]	78.20	00				Dwell time				
	DE [µsec]	6.50					Pre-scan-delay				
	D1 [sec]	10.00	0.00000000				Relaxation delay; 1-5 * T1				
	D20 [sec]	276.0	00000000				Delay between start of different 1D spectra Shift delay for the first increment DELTA=d20-((d1+p0+de+aq)*(ns+ds))-30 Number of dummy scans 1 * n, total number of scans: NS * TD0				
	D21 [sec]	0									
	DELTA [sec]	179.9	5080566								
	DS	0									
	NS	8									
	ZGOPTNS						Options for z	g			
	Channel f1										
	SFO1 [MHz]	399.7	218787				Frequency of ch. 1				
	O1 [Hz, ppm]	1878	.68	4.7	00		Frequency of	f ch. 1			
	NUC1	1H	Ed	lit			Nucleus for a	Nucleus for channel 1			
	CNST18	30.00	00000				Flip angle in	degree			
	p0 [µsec]	3.33					For any flip angle				
	P1 [µsec]	10.00	00				F1 channel -	90 de	gree h	high power pulse	
	PLW1 [W, dB]	15.16	52	-11	.81		F1 channel -	power	level f	for pulse (default)	

Fig 1. ACQUPARS display in "pulse program parameters" view

Fig 2. ACQUPARS display in "all acquisition parameters" view

Spectrum Pro	cPars AcquPars	Title PulseProg Peak	s Integrals Samp	ble	Structure Plot Fid Acqu
» Л S 🕇 🗉	12. V C 🚜	Probe:	PA BBO 4005	51	BBF-H-D-05 Z SP N
Experiment Width Receiver	Experiment	F2	F1		Frequency axis
Program Program Probe Lists NUS Wobble Lock Automation Miscellaneous User Routing	PULPROG	kx_zg2d_nu		E	Current pulse program
	AQ_mod	DQD			Acquisition mode
	FnTYPE	traditional(planes)			 nD acquisition mode for 3D etc.
	FnMODE		QF		 Acquisition mode for 2D, 3D etc.
	TD	25606	16		Size of fid
	DS	0			Number of dummy scans
	NS	8			Number of scans
	TD0	1			Loop count for 'td0'
	TDav	0			Average loop counter for nD experiment
	🔿 Width				
	SW [ppm]	15.9958	10.0000		Spectral width
	SWH [Hz]	6393.862	3997.219		Spectral width
	IN_F [µsec]	1	250.17		Increment for delay
	AQ [sec]	2.0023892	0.0020014		Acquisition time
	FIDRES [Hz]	0.499403	499.652344		Fid resolution
	FW [Hz]	4032000.000			Filter width

INTERCO Integrated Molecular Structure Education and Research Center Northwestern University

APPENDIX G: EVANS METHOD

INTRODUCTION

Evans Method was established in 1959 for magnetic susceptibility measurement [Ref 1]. It was developed by many other researchers in the past half century.

This Evans Method manual will help NMR users understand paramagnetic susceptibility measurement by using NMR. Users can simply follow the procedures to conduct their experiments with little or even no NMR staff assistance

Now, the most common equation is (1) below

 $\chi_{mass} = 3\Delta f/4\pi fm + \chi_0 + \chi_0 (d_0 - d_s)/m$

(1) [Ref 2]

- *χ_{mass}* is mass Susceptibility in cm³g⁻¹
- Δf is obs freq diff in Hz
- f is spectrometer freq, e.g. 399.732x10⁶ Hz on Hg400
- m is mass of paramagnetic substance in g·cm⁻³ i.e. concentration in g/mL
- χ_0 is mass susceptibility of solvent in cm³g⁻¹ •
- d_0 is density of solvent in g·cm⁻³
- d_s is density of solution in g·cm⁻³

There are some other related concepts: [Ref 3]

volume Susceptibility (χ_{ν}) here ρ is the density in kg·cm⁻³ or g·cm⁻³ and $\chi_v = \rho \chi_{mass}$ here M is molecular weight molar Susceptibility (χ_{mol}) $\chi_{mol} = M\chi_{mass}$ Also, understand Conversion of SI and cgs units: $\chi^{SI} = 4\pi \chi^{cgs}$

In this manual, we use cgs unit through-out. For instance, χ_{mol} in cm³mol⁻¹

PREPARATION

Prerequisite: users have done the basic NMR training

Spectrometer: NMR-Au400 recommended

NMR tube: coaxial inserts (see the picture below) or capillary inserts [Ref 4]

NMR Sample Prep: (using FeSO4, t-butanol and D2O as example [Ref 5])

- Solution A: dissolve 7.0 mg FeSO4.7H2O in 0.5 mL D2O, add 30 uL t-butanol, and adjust total volume to 1 mL with D2O
- Solution B: 30 uL t-butanol + 970 uL D2O
- Transfer A into the coaxial insert and B into a 5mm tube

EXPERIMENT SETUP (QUICK PROCEDURES)

- 1. Turn on spectrometer computer monitor by login NUcore with netid/password
- 2. Create a new data set and Set up a regular 1D 1H experiment
- 3. Insert NMR sample into magnet with SX
- 4. Do locking, tuning and shimming as usual
- 5. Run a regular 1D H1 (will see two methyl peaks caused by paramagnetic reagent)

DATA ANALYSIS

- 1. measure distance between two methyl peaks (Δf 510 Hz)
- 2. use a simplified equation $\chi_{mass} = 3\Delta f/4\pi fm + \chi_0$
 - Here, f = 399.732 on Hg400

m = 0.0072 g (actual weight) in 1.00 mL (solution A)

 χ_0 is approximately equal to water mass susceptibility, -0.72x10⁻⁶ cm³/g

3. molar susceptibility $\chi_{mol} = M\chi_{mass}$

Here, molar mass M is 278 for FeSO4, and $\chi_{mol} \simeq 11200 \times 10^{-6}$ [Ref. 6]

- 4. Actual experimental result is $\chi_{mass} = 41.58 \times 10^{-6} \text{ cm}^3/\text{g}$ and $\chi_{mol} = 11600 \times 10^{-6} \text{ cm}^3/\text{mol}$
- 5. If the χ_{mol} value is small, you may consider the diamagnetic susceptibility correction term

 $\chi_{mol-para} = \chi_{mol} + \chi_{mol-dia} \text{ [ref 7]}$

Integrated Molecular Structure Education and Research Center Northwestern University (2)

REFERENCES

- 1. D.F. Evans, J. Chem. Soc. 2003 (1959)
- 2. http://pubs.acs.org/doi/pdfplus/10.1021/ed069p62.1
- 3. http://en.wikipedia.org/wiki/Magnetic susceptibility
- 4. http://www.wilmad-labglass.com/Support/NMR-and-EPR-Technical-Reports/NMR-007--Coaxial-Inserts-in-NMR-Studies/
- 5. 200 and More NMR Experiments. Stefan Berger and Siegmar Braun (2004)
- 6. http://www-d0.fnal.gov/hardware/cal/lvps info/engineering/elementmagn.pdf
- 7. http://pubs.acs.org/doi/pdf/10.1021/ed085p532

REVISIONS

V1.0 2020/2/2	Initial release.	
V1.1 2020/2/10	Added 'Troubleshooting' section	
V2.0 2020/4/28	Added additional specialty NMR experiments	

