
Recrystallization

- Purification
- Grow crystals suitable for XRD
 - Well formed
 - Single
 - Large enough (0.2 0.5mm in 2 of 3 dimensions)

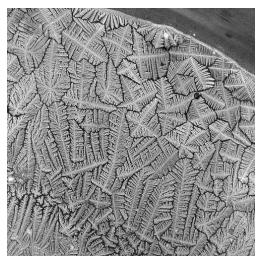
Experimental considerations

- Solvent choice
- Nucleation sites
- Mechanics
- Time

Solvent choice

• Do

- aim for moderate solubility
- remember "like dissolves like"


• Don't

- use "floppy" solvents, e.g. long alkyl chains
 use highly volatile solvents
- Typical solvents include
 - acetonitrile, MeOH, EtOH, iPrOH, ether, MeCl2, ethyl acetate, toluene, and THF to name a few.

Nucleation sites

- Crystallization begins at defect sites
 scratches in glassware
 dust or lint
- A few sites are necessary
- Too many will result in small crystals

Mechanics

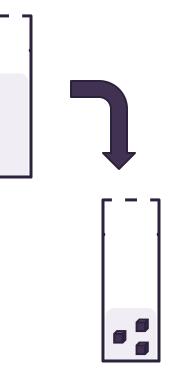
- Crystal growth takes a steady hand!
 re-dissolve the sample
 - knock off crystallites
- Avoid areas prone to mechanical vibration
- Don't constantly "check in" on your samples

Time

- Crystal growth takes time
 reduces lattice defects and twins
 results in larger crystals
- Best results appear within 2 days to 2 weeks
- Sometimes these "rules" are broken

Crystallization Techniques

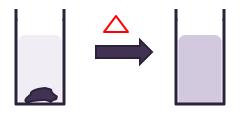
- Many methods, easiest involve solvents
- Prepare to use a lot of material
- Develop a solubility profile

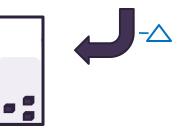


Slow Evaporation

- Dissolve sample to near saturation
 - use solvents in which sample is only moderately soluble
- Loosely cover vial
 - 1 dram vials with holes poked in a plastic cap

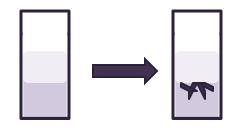
• Wait


- depends on vapor pressure of solvent
- 2 days to 2 weeks.

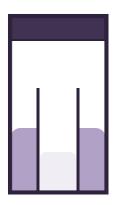


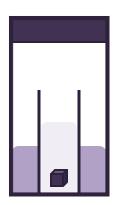
Slow Cooling

- Dissolve sample in hot solvent
 good for material that is
 - insoluble at room temperature
- Cap off and allow to cool slowly
 - moderate temperature with oven, heating pad, cotton wool, water bath, or a warm spot in the lab



Layering/Solvent Diffusion


- Use two solvents, S1 and S2
 - material is soluble in S1 but not S2
 - S2 is less dense than S1
- Dissolve in S1 in vial, slowly add S2 to form a layer on top
- Crystals grow at the S1-S2 interface as solvents diffuse slowly.
- MeCl₂/Et₂O popular combination



Vapor Diffusion

- similar to solvent diffusion, but uses separate vials for S1 and S2
 - dissolve material in S1, in open small vial
 - place small vial in larger vial with S2 and cap off
- must choose solvents carefully

Other Techniques

Sublimation

- Sample loaded into tube under vacuum.
- Thermal gradient applied
- Hydrothermal / Solvothermal
 - Materials dissolved in solvent, sealed in container
 - Subjected to moderate heat for a period of time
- "Protein" methods
 - Hanging drop
 - Use of precipitant

How to coax the crystals out

- Try many different solvents
 - run recrystallizations in parallel
 - build a solubility profile
- Combine methods
 - combinations or trios of solvents
 - slow cooling + evaporation
- Alter environmental conditions
 - leave in the fridge or on a windowsill
 - use a different vial
 - set up a thermal gradient
- Functionalize

